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Optimal Conditioning of Quasi-Newton Methods* 
By D. F. Shanno and P. C. Kettler 

Abstract. Quasi-Newton methods accelerate gradient methods for minimizing a function 
by approximating the inverse Hessian matrix of the function. Several papers in recent 
literature have dealt with the generation of classes of approximating matrices as a function 
of a scalar parameter. This paper derives necessary and sufficient conditions on the range of 
one such parameter to guarantee stability of the method. It further shows that the parameter 
effects only the length, not the direction, of the search vector at each step, and uses this 
result to derive several computational algorithms. The algorithms are evaluated on a series 
of test problems. 

I. Introduction. Quasi-Newton methods for minimizing a function f(x), x an 
n-vector, are iterative accelerated gradient methods which use past computational 
history to approximate the inverse of the Hessian matrix of the function. This is 
accomplished by selecting an initial approximation H'?' to the inverse Hessian, as 
well as an initial estimate x'? to the minimum of f(x), and then finding at each step 
a(K) , the scalar parameter which minimizes f(x(K) - o(K)H( K)g(K)). Letting s(K) = 

v HK)g(K) (K) = a(K) s(K) x(K+1) = X(K) + o.(K), g(x) = Vf(x), g(K) = gx(K) ), and 

(K) (K+1) (K(K+1) (K 
y(K = g(+)_() H(f is then updated by 

(1) H ) = H (K) + D (K) 

where D(K) is the correction matrix. As has been shown by Fletcher and Powell [3], 
n-step convergence to the minimum of a positive definite quadratic form is achieved 
when D(K) satisfies 

(K) (K) (K) (K) (K) 
(2) D y =' -H y 

In a previous paper [6], a class of correction matrices D(K) satisfying (2) was gen- 
erated by a scalar parameter to be 

(3) D(K) (K)' (K) + ((1 - t)of(K) - H(K)Y(K))((l - t)o(7(K) - H(K)y(K))j 
0o (K)'y(K) ((1 - t)0(K) - H(K)y(K))Iy(K) 

It was then shown in [6] that if t > (a(K) - l)/a(K), positive definiteness of H-(K 
implies positive definiteness for H (K+1). Further, it was shown that the smallest eigen- 
value of H (K+1) was a nondecreasing function of increasing t, and hence that the 
condition of H (K) improved as t -+ co. 

Section II of this paper will show that S(K+1) = H(K+l)g(K+l) can be represented as 

(4) s(KI ) = (K) (t)r (K) 
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where kK'(t) is a scalar function of t and r('K a vector independent of t. Further, it will 
be shown that b(K)Q(1) assumes all values from (- co, co), and that for all t such that 

f(K)(t) > 0, H(K+l) is positive definite. 
The chief significance of (4) lies in the fact that if one were able to choose t properly, 

the search for a(K) at each step could be eliminated. A number of choices for t were 
tried with the aim of minimizing the total number of function evaluations necessary 
to minimize f. Section III contains the results of these trials, together with the reasons 
for the various choices, and an accelerated means for determining ao(K) when the t 
chosen is not optimal. 

Finally, some numerical accuracy difficulties which were encountered in an at- 
tempt to choose optimal t will be documented and their significance discussed. 

II. Representation of H(K+l)g(K+1) as a Function of t. An exact representation 
of H(K+i) as a function of t is derived by combining (1) with (3) to yield 

(K) (T K)' 
H (K+1) = H (K) + t 

(T(K)'y (K) 

(5) f y 

((1 t) (K) - H(K)y(K))((l _ t)(K) - H (K)y (K)) 
((1 - t -r(K) - H K(K)y)(K) 

We note, as in [6], that a necessary condition for ao(K) to minimize f(x) along 
f(x(K) + (K) S(K)) is that 

(6) df/dcd(K) =g(K+l) s(K) =g(K+l) Iv(K)=Q 

It is now possible to use (5) and (6) to show: 
THEOREM 1. Let a = g(K) H( K)g(K), b = g(K+l)?H(K)g(K+l). Then 

(7) H(K+l)g(K+ ) 
g - (K)(t)(aH(K)g(K+l) + bH (K)g (K) 

where 

(8) q5(K) (t) = 
aKt_ ,K 

(a(K)t - a(K) + l)a + b 

Proof. Since y(K) g(K+l) g(K) (6) and (5) yield 

H(K+l) g(K+l) = H(K)g(K+l) 

(9) g(K+1) HK(K) (K+1) 

((1 - ~t)0(K) - H(K)y(K))ty(K) ((1 t)a - HKy(K)). 

Now by the definitions of C(K) and H (K)y(K) and (6) we get 

(10) ((1 - t)o(K) - H(K)y(K))yy(K) 

(-1+ (K) - a(K) )g (K) 'H(K) g(K) _ g(K +)H (K)g(K+l) 

Substituting (10) for the denominator in (9), cross-multiplying and collecting terms 
yields 

( (K) t (K) l 

K 
T(K)g(K+l) (a(K)t 

_ C(K+)bH )g(K) 

((1)t - (K) + a(K) t _ C (K) + 

(K) t-a (K I 
(aH(K)g(K+) + bH(K)g (K). Q.E.D. 



OPTIMAL CONDITIONING OF QUASI-NEWTON METHODS 659 

We wish to show that ('K)(t) has the properties mentioned previously. 
Note that since H(K) is assumed to be positive definite, g(R) IH(K)g(K) and 

g(K+l),H(K)g(K+l) > 0 unless either g(K) or g(K+l) = 0, at which point the algorithm 
is terminated. Also, since H(K) is positive definite, a(K) is positive. Hence 

(12) dt ((a (K)t-a(K) + I)a + b)2 

and solving for zeroes of the numerator and denominator of (p(K)(t) yields 

(13) 3(K)(t) > 0 for t > , 1 oa(K - 1 _ b (13) for ~~~(K) or t<:C (K) - (K) a a a a 

In order to show that 1,(K)(t) can assume any value on (- c, co), simply solve the 
equation 'o(K)(t) = s for any s. 

We now prove the assertion that for q5(K)(t) > 0, H(K) positive definite implies 
H(K+l) positive definite. For this we first require the following lemma. 

LEMMA 1. H(K) positive definite implies g(K+l)IH( K+l)g(K+l) > 0 if and only if 
(K)(t) > 0. 

Proof. From (2) and (3), H(K+l)y(K) = (K) so by (6), 
K1Y K+1) (K+1)= (K+ 1)' IK+ 1) (K) 

(14) g(R+l)( g( = g( H( g 

Applying (14) to (11) yields 

(15) g(K+1)' H(K+l) g(K+1) = q(K(t)ab 

Now since H (K) is positive definite, a and b are > 0, so the lemma is proved. 
THEOREM 2. If H is positive definite H' K+1) is positive definite if and only if 

(K)(t) > 0. 

Proof. Since Hf(K) is positive definite, any set of n vectors which are mutually H(K) 

orthogonal span En. Since g(K) 0 0, g(K+l) ? 0, and g(K) IH (K)g(K+l) = 0, let g(K) 

g(K+l) and any n - 2 vectors z,, * * *, Zn-2 which are mutually H1(K) orthogonal and 
which satisfy ziH (K)g(K) = 0, ziH(K)g(K+l) = 0, be a basis for En. Now let t be any 
arbitrary vector. We wish to consider tH(K+1) t. Since zl, 2, Z-2K g (,) g(R+l) are 
a basis for En, we can write t as 

n-2 

(16) aizi + an1g(K) + ang (K+). 

Now substitution into (5) shows that the Hf(K) orthogonality of the z's to each other 
and to g(K), g(K+l) guarantees that z$H(K+1)Z = 0 for i ' j and that z'H(K+l)g(fK) 0, 
zWH(K+l)g(K+l) = 0. Hence by (5) and (16), 

n-2 

=+1 
2 a (K)HZi + agKH(K +l1)gK) + ain(K) H(K+l)g(K+l) H(R1 Ea 2 H() + a2 _g(K) H( )g + 2an-lang H 

i=1 

+ a2 g(K+1) H(K+1) g (K+ 1) 

and from (14), 
n-2 

K1t= Z 2 + aZ2g(K) H(K+l)g(K) 

(17) i=1 

+ (2an-1an + a2)g(K+l) 'H(K+l) g(K+l) 
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We now use again the fact that H(K+1)y(K) = a(K) to show 
(18) g(K)'H(K+g) = a(K)g(K)'H(K)g(K) + g(K+l) H(+l)g(K+l) 

Hence (17) becomes 
n-2 

C H K a E (K)Zi + a2 (K)g(K)' H(K) 
(K) 

(19) i='l 

+ (an-1+ an )2g(K+ 
1) 

H(K+1) g(K+1) 

Applying Lemma 1 to (19) gives the desired result. 
Thus for any t in the range defined by (13), HC(K+1) is positive definite. Hence, choice 

of t in this range maintains stability while scaling S(K+l) to any length desired. The 
following section deals with some choices of t in this range. 

III. Choosing the Parameter t. Section II shows that S(K+1) can be written as 

s(K+1) = H(K+1) 
(K+ 1) 

(K)tr 
K whe 

(20) s = -H g = -ff)(t)r(K) wh 
(K) (K)' (K) (K) (K) (K+1) + g(K+l) (K)g(K+l) (K) (K) 

r =g H g H g HgKl~ H g 

Having chosen a t, and hence S(K,+1) we are then faced with the problem of deter- 
mining (+ In general, the closer (+) is to 1, the fewer functional evaluations 
are necessary to determine the optimal value of a(+l). But since a(K+l) is determined 
by the length of S(K+l) , a(K+1) iS in fact a function of t. Thus the proper choice of t 

would yield a (K+l) = 1 at each step. 
The problem here is attempting to determine the magnitude of the step-size to 

the minimum along S(K+1). Since f is assumed to be a nonlinear function, no analytic 
expression for the step-size can generally be obtained. The best which can be achieved 
is an estimate to the parameter t, and to this end several algorithms are tried. 

The first algorithm tried is the algorithm for t = o developed in [6]. The rationale 
for this in view of the developments of this paper can be derived from the following 
argument: 

Expand f(x) in a Taylor series about x(K) to yield 

J(x(K+1)) = f(x(K)) + (x(K+l) _ X(K)),g(K) 

(21) + 2(X(K+l) - x(K)) T(K)(x(K+l) _ X(K)) 

= f(x(K)) + (y(K) g(K) + 1a,(K) ' T(K),7(K) 

= f(x(K)) + a (K)s(K)g(K) + a(K)tS(K) T (K)s(K). 

Differentiating (21) with respect to at(K) yields 

(22) s g(K) (K) + (K)s(K)' T(K)S (K) o 

or 

(K) 9~(K)' H(K) 9(K) (23) a = ( ( 
g(K H(K T(K) H(K)g (K) 

Now if H( K)g(K) = T(K)-1g(K)), then at(K) = 1. Hence we want to choose H(K)g(K) 

as close to T (K)-1g(fK) as possible. Fletcher and Powell have shown that as x(K) ap- 
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proaches a region in which f is essentially a quadratic function, H(IK) will tend to 
T(K)-1. In general, the rationale for choosing t = o derives from the fact that g(K+l) 

and g(K) are H( K) orthogonal, hence the step-sizes in these orthogonal directions 
have no discernible relationship to each other. However, computational experience 
may have generated a reasonable step-size in the direction of H(K)g(K+l). Thus we 
wish to keep the eigenvalue of H(K+l) in the direction of g(K+l) as close to that of 
H(K) in the direction of g(K+l) as possible. 

As in Lemma 1, 
(K+1)' (K+1) (K+1) KO(KI(K1 g H g = g(K) H(K+ l)g(R+) 

(24) - (K) t _ o(K) + 1)g(K) H(K) g g H1) g(K+l) 

(K) (K) HK1) (K K1 
(a (K) t - a (K) + I)g(K) 'H(K)g(K) + g(K+l) H g(K+l) 

and hence 
(25) iim g(K+l)'H (K+l)g(K+l) = g(K+)'H (K) (K+1) 

yielding precisely the desired result. 
Another, and perhaps more important, property of t = o arises from the prob- 

lem of minimizing the condition number of the matrix H(ffK+1). This problem is alluded 
to in [6]. Here the desire is to minimize ,u(A) = I IA [ I I IA-1 I [. Letting [ I * I I be the 
spectral norm, ,u(A) = XA/X1 where Xn and X1 are the largest and smallest eigen- 
values of A respectively. 

(K+1) To attack this problem for H , we see from (19) and (15) that for any vector i', 
n-2 

(K+1)~ 2 (KZi 2 (K) g(K)' (K)g(K) H ai = >i aXzH(K)z. + an a(H)g H g 
(26) i=1 

+ (an-1 + an)2 (K) (t)g(K+ 1) H(K) g(K+1) 

where g/K)(t) = ap(K)). As this is true for any vector i, it is true for rn(t) and rQ(t), 
where rn(t) and rQ(t) are the eigenvectors corresponding to X,n and X, and normalized 
so that I Irn(t) II =I IrQ(t)I I = 1. The quantity which we wish to minimize is then 

(27) ,>(Hf(K+l)) 
rn(t)IH(K+I )r(t) 

Now by (26) and (27), certainly as p(K) (t) _ oc, rn(t) g(K+l)/llg(K+l) I and 
co . Also, in this case, the component of rQ(t) in the direction of g(K+l) > 0, 

and X1 remains finite. Hence ,(H(Kf+l)) a) as co(K)(1) a). Also, as ,(K) (t) O 0, 
r1(t) g(K+l)/[ [g(K+l) I I and X1 -O 0. Again, here the component of rn(t) in the direc- 
tion of g(K+l) > 0, and Xn > 0. Here again ,(H(K+l)) C 

Thus we wish to keep l(K)(t) bounded away from 0 and oo. Now by (8), 

(28) ip(K)t = a(K)(t) (a t-aa 

(a (K) t -a + 1)a + b 

Differentiation of (28) shows that do(K)Q(t)/dt = 0 for t = c, and that this is an 
inflection point of lp(K)(t). 

As t = o corresponds to g,(K)(t) = 1, this clearly avoids the problem of 6,(K)(t) O 0 

or y'K)(t) c. Further, since t = o is an inflection point of O(K)(t)( it would appear 
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that the deterioration of the condition number ,u is symmetric about iI/K)(t) = 1, and 
hence t = o is in some sense an optimal choice to minimize ,(H"(+l)) at each step. 

Another method which suggested itself takes into account the result [4], that as 
x (K) approaches the minimum, Newton's method converges quadratically, i.e. if t is 
the minimum 

(29) llxK) - xl ? M |lx(K) - xl2 

This suggested using (K) as an estimate of I IX(K) - xI I and t was chosen so that 
Is(K+1)1= -I Ij_(K)IjIj2. This proved computationally unsatisfactory (see Section IV), 

so was modified by choosing t so that I Is(K+l) 1j = j |7f(K) II. 

Two other methods, both directly sensitive to a (K) , were also tried. The first was 
simply t = a(K), which has no rational basis, but appears to be reasonably satisfac- 
tory. The last was t (2a(K) - l)/a(K), which is obtained by the composite Fletcher- 
Powell scaling discussed in [6]. 

The results of testing all five methods on a series of test problems are discussed in 
Section IV. Two further points are necessary to round out this section. 

First, in the two methods which chose t so that I is(K+l) 11 =I l( (K) 1 12 and I Is("+1) II = 

Ij?'SK)I, the method proved numerically unstable for t < (ao - Zl)/a(K) - b/aa(K). 
This arises from the fact that it is computationally unfeasible to forceg(K+l) H (K)9g(K) = 0, 
but rather only Ig(K+l) IH(K)g(K) I < 3, where a is rather crude. This instability can be 
eliminated by refining 6, but numerical experiments with this showed that the number 
of function evaluations increases. Hence t was restricted to the range t > (oa - 

1)/0~~~(K and if t < (ao(K) - l)/a(K) -b/aoa(K was indicated, t = o was substituted. 

Finally, the cubic quadrature technique devised by Davidon [2], was used to 
locate a(K) at each step after two points were found at which df/da(K) < 0 and 
df/da(K) > 0. In an attempt to expedite the a search when no point had yet been found 
at which df/da (K) > 0, rather than simply doubling a(K) as suggested by Davidon, a 

new approximation was found as follows: 

Assume f(x) = Ix'Ax + x'b. Then by (23), 

(30) a (K) = s(K)Ig(K)/(S(K) 'As(K)) 

Now 

(31) f(x + s(K)) - f(x(K)) = x(K) 'As(K) + as(K) 'As(K) + bs (K) 

= S(K) g(K) + IS(K)'As(K) 

hence 

(32) s(K) As(K) = 2(f(X(K) + S(K)) _ f(S(K)) S(K)g' g(A)) 

(30) and (32) combine to yield 

(K) 'g(K) 

(33) a - 2(f(x (K) + S(K)) 
- 

f(x(K)) 
- 

S(K)'g(K)) 

Thus if df/doa (K) < 0 for a(K) = 1 and a (K) yielded by (33) satisfies ao(K) > 1, this 
a(K) is tried. Otherwise of(K) = 2 is tried. Comparison of the results in Section IV with 

the results in [6] verifies that this saves a fair number of function evaluations. 
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IV. Computational Results. The five methods for selecting t discussed in Sec- 
tion III were tested on the four test problems documented in [6]. As previous testing 
included the straight Fletcher-Powell and Barnes-Rosen [1], [5] techniques, they are 
not included here. Previous tests have shown both to be substantially inferior to four 
of the five methods tested here. 

The results of the tests are summarized in Table 1. As in [6], Iter. designates the 
number of times H(K) is updated, and Eval. the number of function evaluations. The 
choice of t which yields I i Is""'II = Il"'112 is designated as the contracting norin 
version, while the version which yields I Is"'I j = I() j I is designated as the con- 
stant norm version. 

It is clear from the table that the contracting norn version is markedly inferior to 
the other four versions, apparently because the quadratic convergence criterion 
does not begin to take effect until the last few iterations. The other four versions seem 
remarkably similar, with a slight edge going to the t = version. The reduction 
in total function evaluations for t = and t = (2a(K) -1)/a(K) from [6] is due to 
the improved a(K) search documented in Section III. Note, however, that for the 
initial estimates (250, .3, 5) for the Weibull function, t = (2aR) - 1)/a(K) is inferior 
to this choice of t without the new algorithm for determining a(). This verifies that 
ill-conditioned problems are very sensitive to all phases of the computational tech- 
nique. 

In general, the results of this testing appear to justify using t = X as a reasonable 
choice for t generally. It may, however, prove somewhat better to combine this 
algorithm with the constant norm algorithm, using t = X until steps become small, 
then switching to the constant norm. Computational experience verifies that this may 
accelerate convergence to some degree. 
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